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The curvature contributions to the capillary-wave Hamiltonian of a pinned interface are analyzed
within the mean-field version of the Landau-Ginzburg-Wilson theory supplemented by the crossing
constraint. The resulting fourth-order Hamiltonian can be unambiguously written in the Helfrich
form with the coefficients depending on the local distance I of the fluctuating interface from the flat
substrate. The expressions for these coefficients are derived and their ! dependence is discussed;
they all consist of exponentially decaying terms multiplied by polynomials. The expression for the
l-dependent stiffness coefficient present in the fourth-order Hamiltonian differs from one derived

recently within a second-order theory.

PACS number(s): 68.10.—m, 68.45.Gd, 82.65.Dp

I. INTRODUCTION

The structure of the capillary-wave Hamiltonian,
which represents the cost in free energy to deform the
flat interface into a given rippled configuration, has been
intensively studied in recent years [1-43]. In these stud-
ies, mostly devoted to free interfaces, special empha-
sis has been put on the form of the functional de-
pendence of the capillary-wave Hamiltonian on the in-
terfacial configuration. This dependence plays an im-
portant role, e.g., in the interpretation of the scatter-
ing experiments [44-51]. If, however, one studies wet-
ting [3,4,8,9,11,12,14,19,20,32,35,36,38,40-43], then the
knowledge of the capillary-wave Hamiltonian for a pinned
interface is essential. Recently the wetting transitions
in three-dimensional systems with short-range forces, for
which the upper critical dimension is 3, have received spe-
cial attention because of the nonuniversal indices charac-
terizing these transitions [3,8,9,19,20,30-32,35-38]. As
the paradigm of a system undergoing the wetting tran-
sition one usually considers the uniaxial ferromagnet in
which the magnetization m(z, R) serves as the order pa-
rameter; z measures the distance from the substrate sur-
face and R = (z,y). Until now the studies of this prob-
lem [3,8,11,12,20,30,32,35] were concentrated on the lead-
ing term in the capillary-wave Hamiltonian. Indeed, Jin
and Fisher [32] showed recently that for a fluctuating in-
terface separating the bulk phase a from the §-like phase
adsorbed on a flat substrate the leading contribution to
the capillary-wave Hamiltonian has the form

Howll] = /dR B s (VDR V)|, (1)

where [ = [(R) denotes the actual interfacial configu-
ration, i.e., the local distance of the fluctuating -3 in-
terface from the substrate surface. V(I) is the effective
interface potential describing the interaction of the a-f3
interface with the substrate. The important feature of
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Eq. (1) is that it contains the l[-dependent stiffness coef-
ficient ¥,g(!), which replaces the constant stiffness oqg
of the free a-8 interface considered in previous studies
[3,4,8,11,14]. It has been shown that ¥,3(l) contains,
in addition to its asymptotic value X,g(00) = 043, the
exponentials multiplied by the polynomials, i.e., terms
wik®e 7" where 0 < k < j = 1,2,...and k = &5 is
the inverse correlation length in the bulk phase 8. The
presence of the polynomials multiplying the exponentials
turned out to be crucial in the renormalization-group
analysis of the order of the wetting transition; for an ex-
tensive discussion and comparison with other approaches
see [32].

Equation (1) contains only the leading-order term
[~ (V1)?] in the gradient expansion of the complete
capillary-wave Hamiltonian. This leading-order term can
be classified as being of second order in the spatial deriva-
tives; indeed, the sum of the orders of the derivatives
of I with respect to = or y is equal to 2 in this term.
However, another term of second order could, at least
in principle, be present in Eq. (1). This is a term pro-
portional to Al, where A denotes the two-dimensional
Laplacian. This would be the mean curvature term be-
cause up to the second-order terms the mean curvature
H = %Al; see below. It was shown in our previous work
[39] that, although in the process of systematic deriva-
tion of all the second-order terms contributing to the
capillary-wave Hamiltonian the terms proportional to Al
do appear, their sum is identically zero and the only re-
maining contribution is the one present in Eq. (1).

For free interfaces the capillary-wave Hamiltonian has,
up to the curvature terms, the Helfrich form [1]

ittt = [ anf oup [VIF 07 - 3]

+4/1+(VI)2 [c?{H + c?sz + cocG]},
(2)
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where

H— loa(1412) + 1y (1 + zg)g— 2y lely 3)
21412 +12):

is the mean curvature and

loglyy — lﬁy

G= =W ey
Q+rzrie)e

(4)
is the Gaussian curvature. Up to the second-order terms
the above capillary-wave Hamiltonian [Eq. (2)] reduces
the form

HEw([l] = /dR{ %aaﬁ (V)% + %c?,m} : (5)

For smooth and asymptotically flat interfaces the sec-
ond term in Eq. (5) vanishes and one is left with the
standard form of the second-order capillary-wave Hamil-
tonian containing (V1)? only. This is not the case for a
pinned interface. Suppose that in this case the second-
order capillary-wave Hamiltonian has again the structure
given by Eq. (5) but with the l-dependent coefficients
Yap(l) and Cg(l); it also contains the effective interface
potential V(I). An arbitrary part of the mean curva-
ture term 1 [ dRCg(l)Al, namely, 3 [dRCq (1) A(l) Al
where A(l) is an arbitrary smooth function that deriva-
tive vanishes at infinity, can be integrated by parts into
—3 [dR[A()Cx ()] (V1)?, where the prime denotes the
derivative with respect to l; the remaining part, i.e.,
3 [dR [1— A(l)] Cu (1) Al, still represents the mean cur-
vature contribution. The above procedure of splitting the
integrand and integration by parts results in the modi-
fication of the coefficient multiplying (VI)2. Even im-
posing the boundary condition that the limiting value
(at I = oo) of the coefficients multiplying %(Vl)2 and
Al have to be equal to the known coefficient 0,5 and
cY; for free interfaces does not remove this ambiguity be-
cause Ci(oo0) = A'(co) = 0. Thus there exists certain
ambiguity in the structure of the {-dependent coefficients
present in the second-order capillary-wave Hamiltonian
for a pinned interface.

In this paper we show that up to fourth-order terms
the capillary-wave Hamiltonian for a pinned interface can
be unambigously written as

Howll] = /dR{ Ss(0) [VIT (VIE — 1]
FVIF (VDR [Ch() H

+Ci() H? + C&(D) G + V(l)} , (6)

and we derive the explicit expressions for the I-dependent
coefficients 3% 5(1),Cx (1), Ci2 (1), C&(1). In the limit [ —
oo these coefficients reduce to the values we derive by an
independent method for the free case.

The interesting conclusion resulting from Eq. (6) is
that the coefficient of the surface stiffness X7 5(1) as de-
rived by us within the fourth-order theory is different

from the one derived recently within the second-order
theory. In principle, this difference may lead to new pre-
dictions (based on the functional renormalization) for the
wetting transitions. However, we show in Sec. IV that
the renormalization of the capillary-wave Hamiltonian
given by Eq. (6) but including terms up to second-order
only leads to the same conclusions as the standard theory.
New predictions may come out when the capillary-wave
Hamiltonian is renormalized up to fourth-order terms.
This will be the subject of our further work.

In Sec. II we present a systematic way to derive the
expression for the constrained magnetization profile up to
an arbitrary order. This profile is then used to derive the
expression for the constrained magnetization profile up
to an arbitrary order. This profile is then used to derive
the expression for the capillary-wave Hamiltonian, which
includes terms of arbitrary order.

In Sec. IIT we concentrate on the fourth-order terms
and we derive the analog of the Helfrich Hamiltonian for
the pinned interface and obtain explicit expressions for
the [-dependent surface stiffness and for the [-dependent
coefficients multiplying the curvature terms. Section IV
contains a discussion of the results.

II. GENERAL EXPRESSION FOR THE
CONSTRAINED MAGNETIZATION PROFILE
AND FOR THE CAPILLARY-WAVE
HAMILTONIAN

To derive the constrained magnetization profile and
the capillary-wave Hamiltonian we employ the mean-field
approach, starting from the Landau-Ginzburg-Wilson
(LGW) Hamiltonian for a semi-infinite (z > 0) uniax-
ial ferromagnet in the presence of a flat substrate

Hiow(m] = /dR([o dz{% [(%—?)2 + (Vm)2:|
+<I>o(m)} + <I>1(m|z:o))- (7)

The bulk free-energy density ®o(m) is taken in the form
of the double parabola [6,32,39] having two equal minima
at meo < 0 and mge > 0 (thermodynamically the system
is located at the a-8 coexistence line)
Kpl 2
Bo(m) = { 1 (m — mao)? form <0 (8)
—2 (m — mpge)? for m >0,
where p.,pg are the inverse bulk correlation lengths for
the a and B phases, respectively. This simple form of
®o(m) allows for the analytical derivation of the expres-
sions for the magnetization and for the capillary-wave
Hamiltonian. The surface free-energy density

1
®;(my) = —him; — ‘Z‘Qm% ) 9)

where m; = m(z = 0, R), contains the surface field h;
whose positive values stabilize the 3-like phase near the
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substrate. The LGW Hamiltonian is supplemented by
the constraint defining the position of the interface. Here
we follow Jin and Fisher and choose the crossing criterion
[31,32,36,37,39] according to which the value of the mag-
netization at the interface, i.e., at z = [, is equal to zero.
The profile [ is assumed to be asymptotically flat, i.e.,
for R — oo, l tends to a constant (I;) and all its spatial
derivatives tend to zero. Within the mean-field approach
the magnetization profile including the a-f interface is
obtained via minimization of the LGW Hamiltonian un-
der the “crossing” constraint. In this way one obtains the
constrained magnetization m(z, R; [l]), which is a func-
tional of the interfacial shape [ and fulfills the crossing
constraint

m(z=1, R;[l])) =0. (10)
The continuity of ®o(m) at the crossing value (m> = 0)
gives
Pa Moo _ 4 (11)
Pp Mpgo

The constrained order parameter is denoted in phases
a and (3, ie, for z > [ and for 0 < 2z < [, by
Me = Mmqa(z, R; [l]) and mg = mg(z, R; [l]), respec-
tively. The minimization of the LGW Hamiltonian leads
to the following equation for the constrained order pa-
rameter:

(12)

92
(@ + A) m., = p,21 (my — mq0) ,

where v = a,3. Equation (12) is supplemented by the
boundary conditions at the substrate’s surface and at
infinity:

Omg(z, R; [I])

K 92 . = —hy —gmg(z=0,R; [1]) ,
(13)
zl_i&lom(x = Mgyo - (14)

Our method of deriving the fourth-order capillary-
wave Hamiltonian can also be applied to the case of the

extended LGW theory, which contains, on the right-hand
2

side (rhs) of Eq. (7), the extra term B (%ZT + Am) ,
B = const [24,27]. The extended theory also leads to
a linear partial-differential equation for the constrained
magnetization, which can be solved with the help of our
procedure. One expects then the B-proportional con-
tributions to the surface stiffness as well as to the coeffi-
cients multiplying the curvatures; see [24] for an extended
discussion of this problem for a spherical interface.

A. Constrained magnetization

The solution of Egs. (10) and (12)—(14) is obtained
separately in each region defined by the double-parabola

potential. We restrict our presentation to the 3 phase,
where the analysis is more involved; in the o phase the
analysis proceeds similarly to the free case.

First we recall the solution up to the second-order
terms, which was obtained previously [39]:

(2, B []) = may(z30) + biy(z:0) AMy,  (15)
where
Mua(z; 1) = mao {1 — exp[pa(l — 2)]},
mgrg(z;l) = mgo + B+ exp[pg(z —1)]
+B_explpg(l — 2)] , (186)
and
_ _Mmpot X _ T+ mpoXG
By = 1-gx2 ° B-= 1-GX2 X
(17)
hi 4+ gmgo Kps+g
X =exp(—pgl) , T= ——— =——0.
p(—pgl) Kpp—g Kps—g
The functions b;, and M, are given by
z—1
bla(z 5 l) = exp(—paz) ) (18)
1 )1l—-=2 I+ 2z
big(z;l) = —{ exp(pgz) — G exp(—ppz)
pe| 2 2
Gl —pgp
+1 — ngX explpa(z — 1)]
G2X2l —pgp
—WX exp[—pg(z —1)] ¢ ,
where p = g K/[pg(Kps — g)?] and
mgo + 7 X
MQ = —Mauo eXp(pal) ) M[-} = *]-ﬂin . (19)

7 [Eq. (17)] measures the distance from the critical wet-
ting point along the coexistence line 7 ~ 1" — T,,,.

In view of the above results we look for the general
solution of Egs. (10) and (12)—(14) in the form

mg(z, R; [l]) = mgo + 7 exp(—pgz) + Fa(z, A) Mg,
(20)

where F(z, A) is a z-dependent pseudodifferential oper-
ator and Mg is a function of R depending on I, Al, and
(V1)2. Equation (20) is derived by writing the solution
of Eq. (12) as

mg(z, R; [l]) = mpo + exp(z4/pj — A) Mj

+ exp(—z,4 /p?3 —A) Mﬁz ,

(21)

where
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MR 1) = [ % exp((ik - R)] F5 (ks [1])

i=1,2. (22)

.7-'1( [1]) are arbitrary functions such that the crossing
CI‘lteI‘lOIl is fulfilled. Then, with the help of the crossing
criterion, one expresses M, 52 as a functional of Mé, which
finally leads to Eq. (20); see below. Indeed, it was shown
previously [39] that up to the second-order terms

mg(z, R;[l]) >~ mgo + 7 exp(—pg=z)

i 1- 22)

— exp(pp2) [g + (ﬁ - p) A] }Mg ;

2pg
(23)

after deriving the expression for M, é and inserting it into
Eq. (23) this equation reduces to Egs. (15)—(19).

In the present analysis we aim at finding the magneti-
zation profile and the capillary-wave Hamiltonian up to
an arbitrary order. For this purpose the yet unknown
functions Fg and Mg in Eq. (20) are represented as the
formal power series

Fg(z, A) = Y Fopp(2) A" (24)
and "

M,,3 represents that part of Mg which contains all spa-
tial derivatives of I of orders that add up to 2n; it is
thus a linear combination of terms (Al)* [(VI)2]"~* with
l-dependent coefficients. The above expansions (24) and
(25) lead to the expression for mg

mg(z, R; [l]) = Zmnﬁ(zv R; [1)), (26)
n=0
where
mog = mw,@(z;l) )
mig = Fog(z) Mlg =+ Fl,g(z) AMoﬁ, (27)
mag = Fog(z) Map + Fip(z) AMg
+Fo5(2) A*Mog , ... .
Generally,

mog = mgo + Texp(—pgz) + Fog(z) Mog,
n

=0

and we demand the crossing criterion to be fulfilled in
each order

mag(z =1, B; [I]) = 0. (29)
In our previous work [39] we determined mog and myg.
The knowledge of these terms was sufficient to calculate
the surface stiffness coefficient. This algorithm can be
continued to an arbitrary order, though for n > 2 the
analysis becomes cumbersome. One obtains the expres-
sions for M,3, n =0,1,...,

mgo 4+ 17X
Moy = ————
o Foa(l)
Fis(l)
Mg = — AMogs, 30
13 Foﬁ(l) 03 ( )
Fip(l) Fap(l) 12
Mg = — — A*Mog, ... .
T TR T T Fop) =
Generally, for n > 0, one has
lﬂ(l) 2

A'M,—; 31
Z Fuﬁ(l) i3 - ( )
After substituting M,z [Eq. (31)] into Eq. (28), one ob-

tains
mng - Z biﬁ(z; l) AiMn_ig 5 (32)

i=1
where
Fop(2)
bi 1l = Ly -

o(x31) = Fipl2) - Fip) 2 (33)

Note that for all 7, b;3(z = [ ;1) = 0 and thus the crossing
criterion is fulfilled in every order. The functions F;g(z)
remain to be determined in the process of constructing,
order by order, the solution mg [Egs. (26), (30), and

(33)]-

B. Capillary-wave Hamiltonian

In this section we sketch the derivation of the general
expression for the capillary-wave Hamiltonian that in-
cludes terms of arbitrary order; details are presented in
Appendix A. For this purpose each of the four terms H;g,
i =1,...,4, representing the different 3-phase contribu-
tions to the LGW Hamiltonian [Eq. (7)], i.e.,

e fon [ ()

K ! 2
’Hﬁz = ?/dR/ dz (Vmﬂ) )
0

(34)

(35)
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sz l
Hﬂs = 25 /dR / dz (mg —mﬂo)z 5 (36)
0

1
Hoq = —/dR (hl my + -z-gmi) , (37)

is split, with the help of Eq. (26), into

Hip = > HD,

n=0

i=1,...,4, (38)

where %Eg) represents the 2nth-order contribution to

Hig. Each contribution ’Hf.g), i=1,...,4, is then an-
alyzed separately. After integrating by parts and using
the crossing criterion [Eq. (29)] and Egs. (12) and (13)
the resulting expression for #g can be written in a trans-
parent form

1
Hy = /dR[—% / demagAmg + V() | . (39)
0
V(1) in Eq. (39) represents the effective interface poten-
tial [29-31]
V() = oag + ouwg + V(1) , (40)

where 0,3 is the surface stiffness coefficient of the wall-3
interface and o,g is the surface stiffness coefficient for a
free a-( interface,

K 1
Owg = EpﬁTz — hl(T+mﬁ0) - Eg('r+m50)2 , (41)

Oap = ) (mfxo Pa + m[230 pﬁ) ’ (42)
and
_ unX +vX?

v1 = 2Kpgmpot and vz = KpgGm3, + Kppr?.

C. Fourth-order contributions
to the capillary-wave Hamiltonian

The fourth-order contribution to Hg has the form

K 1
’H% =-5 /dR/; dzmigAmyg . (44)

Substituting m5 [Eq. (28)] into Eq. (44), one obtains

K l

where b3 and Mg are given by Egs. (30) and (33). Since
Eq. (12) leads to (822 — pf;) mig + Amgg = 0 one has
AMO[-} - A"'r’"rrﬁ (z 5 l) . (46)

(v3 - 82) bia(z30)

This leads to the following form of the fourth-order con-
tribution to Hg:

1
=% /dR/ dzys(2;1) (Ameg)®,  (47)
0
where
b i
’Yﬂ(z;l) _ - IB(Z ) . (48)
(7% — 02) ban(= 1)

A similar analysis for the fourth-order a-phase contribu-
tion leads to the analogous expression

2= =5 [ar [ dem(ei) (Ame), (89

with

o bia(z; 1)
Yal(z;1) = (P2 __163) bia(z; 1)

(50)

III. CURVATURE CONTRIBUTIONS
TO THE CAPILLARY-WAVE HAMILTONIAN

The aim of this section is to show that up to fourth-
order terms the capillary-wave Hamiltonian is given by
Eq. (6) and to derive the expressions for the coefficients
Eh5(1), cx (1), cyz(1), and cg(1). We analyze first the free
interface and then the pinned one.

A. Free a-8 interface

In this case one has

mop(z; 1) = mgo {1 —explpa(z — )]},

Maa(2 1) = Mao {1 — explpa(l - 2)]}, (51)
and
Mgﬂ = —mgg exp(—pgl),
Mg, = —mao exp(Pal), (52)
0 -2z 0 z—1
Ya(z3l) = s Yalz3l) = Tk (53)

Using the above equations, the fourth-order contribu-
tions are summed up to the form

K 1]
g = X /auz/_oo dzA3 (Am,)?

_ _g /dR/_Ioo dzA3[(m)? (Al)?

+(map)? (VO* + 2mEsmBAL(VE?],  (54)
where the prime denotes the derivative with respect to
the second argument. Analogously, the fourth-order a-

phase contribution has the form
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H2 =~ [dR [ aamd,)?
l
-5 [ R [ [(mﬂ'a)z(m)z

+(mAH)2 (VD + 2m% m9 Al (Vl)z] . (55)

Il

(a2

After performing the z integrations in Egs. (54) and (55)
one obtains

02 __ 02 02
HO? = HO? + H

K
~ 7 (mapa + migpa) [aR (V1)

2 2
_K [mao 4 Meo /dR(Al)z
16 \ pa pg

+§ (mBo — m2o) /dRAl(Vl)2 . (56)

Taking into account that up to the fourth-order terms
Egs. (3) and (4) reduce to

1
V1+ (VI)2H = AL+ Lol + 1yyl2
— 2ylyl,, — A(VI)?],
VIt (VIEH? = %(Az){ (57)

14+ (VD)2G = laalyy — 12,

and including the second-order contribution
H' = Loug / dR (V1)?, (58)
one finally obtains

Hewlll = [ dR {ous [VIF (07 - 1] (59)
+ 1+ (VD)2 (% H + s H? + cOGG)} ,
where

K
Tap = & (Pam?y + Pﬁm?ao)v

K
4 = K mgo — ma), (60)

o _ K m2, m%o
CHz = — —_— 4+ — 9
4 DPa Pp

while the coefficient ¢ remains arbitrary. Note that c‘}p
is negative [28] and that c% is antisymmetric with respect
to the a-f interchange. Indeed, if one decomposes the
interfacial configuration [/ into a flat part [, =const and
the fluctuation 8l around it I = I, +6! ([ dR&l = 0, 61 —
0 for R — o0), then the change of sign 6l — — &l results
in the change of sign of the mean curvature. But the a-8
interchange and the simultaneous change of the sign of 61

is the symmetry operation for the free interface and thus
¢ must be antisymmetric under the a-3 interchange, as
is the case.

B. Pinned a-3 interface

The case of the pinned interface requires a thorough
analysis of the contribution from the 8 phase adsorbed
on the wall; the contribution from the o phase is identical
to the free case considered previously. We start from the
general expression for ’HE [see Egs. (47), (48), and (18)]

2 K ! 2
= /dR/_oodz'yg (Amng)

=K far [ loo dzyal(m) ) (AL)?

+(mig)? (VI)* + 2ml zm! s Al(VI)?]. (61)

First we briefly outline our general method employed in
this paper to derive the capillary-wave Hamiltonian in the
Helfrich form. Although this method is simple, it requires
cumbersome calculations. It consists of the consequent
application of the following procedure: an expression of
the type

/dR/(:dzAl(z;l)(DRAz)(z;l),

where Dp is a differential operator in R [for example,
Dpg = Aj; see Eq. (61)], is split into the sum of two terms
with the help of an arbitrary function f(z;{)

l
/ dR [) Ay (21)(DrAs)(231)
l
_ /dR/O [1— f(z: )] A1 (2 1) (DrAs) (2:1)

!
+/dR/0 F(z30) Ax (23 1) (DrAs) (2 1)

and the second term is integrated by parts. This pro-
cedure is applied three times with the use of functions
A(z;1), n(z;1), and {(z;1) in order to transform Eq. (61)
into a form that contains the fourth-order contributions
to y/1+4 (VI)2H. These different contributions depend
on A, 77, and ¢. The remaining steps amount to exploiting
the arbitrariness of the functions A, 7, and ¢ and choosing
them in a such way that the coefficients multiplying these
different contributions are so adjusted that they sum up
to Cx(1)4/1+ (VI)2H.

Before doing that it is convenient to add zero to 'H%
in Eq. (61) written as 0 = def; dzo(z;1) (lpalyy —
lzzlyy), where a(z;1) is an arbitrary function. After in-
tegrating the rhs by parts one obtains
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1
0= /dR/ dz a(z;l) (lealyy — laalyy)
0

l
= /dR(/ dz [a(z;l)(lmlyy — lzy) — a"(z;l)lil; — 3a'(z;l)l,lyl,,y] (62)
o

_ {a/(l;l)lgzj + a(l;1) [lzlylzy - % (L2lyy + ljlﬂ)] } ) .

The integrand in the first integral on the rhs of Eq. (62) contains the fourth-order approximation of the product
v/ 1+ (V)2 G. With the help of auxiliary functions A and 7 we perform integrations by parts as mentioned above:

! 1
_K / dR / dzygmlygm! g AL(VI)? = —K / dR / dz{'yg(l — Ayml gt Al (V)2
0 0
1
+3 ('Yﬂ’\m:rﬁmfr{-ﬁ)’ (13 + 1) — v A1 — ) megmiyl g(laall + 1y 12) (63)
+2 (’yﬂ/\nm;ﬁm;{ﬁ)’ lil;‘; + 4'7;3/\nm;ﬁm;'.ﬂl¢lylmy} .

[To shorten notation we skip the arguments of functions yg(z;1), A(2;1), 7(z;1), and m,g(z;1) in all places where it
does not lead to ambiguity.] Next we collect from Egs. (62) and (63) those terms which, after proper choice of the
arbitrary functions, contribute to the mean curvature H, namely,

1
/dR(lilyy + l;lm) [%a(l;l) - K/ dzygA(1 — n)m;ﬁm;{ﬂ]
0

1 L3 !
=2l ley [Ea(l; 0+ /o dz (50/ — 2K~ypAnm)g mﬁﬂ)] - Al(Vl)zK/0 dzyp(1 — \)ympgmyls. (64)
Expression (64) can be written in a compact form as

/dRB(l) 214 (V2 H — Al] (65)
provided the following equalities hold:
1 ! !/ n
B(l) = §a(l;l) - K/(; dzA(1 — n)Yg Mg Mg,
1 L3
B(l) = ia(l;l) + /0 dz (—2-0/ —2KMnygmig mﬁﬁ) , (66)
l
B(l) = K/o dz (1= A)ygmygmys .
From Egs. (66) one obtains
l
aftil) = 2K [ dzyp(1 = My i,
(67)
1 1
2K
/0 dza' = -——3—/0 dzA(1 = 3n)ygmogmys -

The remaining two terms in Eq. (62) are combined with the remaining terms on the rhs of Eq. (63) and with the
second term on the rhs of Eq. (61). The sum of these contributions can be transformed with the help of Eq. (67) into

Lo 1
K [ar(y /0 dz [g (vemlyg mitg) — 5W,(m;;ﬁf’] : (68)
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Thus the fourth-order S-phase contribution to the capillary-wave Hamiltonian has the form

2 4 ! K ! n \! K " \2
HE = —/dR (VD) / dz [——3 ('yg)\m,,ﬁ m,,ﬂ) + > Y8 (Mg ]
0

l
K [2y/T+ (V)2 H - Al / dzyp(1 — Nyl gm!t 5
0

(69)

—2K \/1+ (V)2 H? /ldz(m;,ﬁ)z - \/1+(Vl)2G/ dza}.

The rhs of Eq. (69) has the same structure as the rhs of
Eq. (2), except for the presence of the term containing
Al. The functions o and X have to be determined on the
basis of Egs. (66). Equation (69) is supplemented by the
second-order contribution #j [see Eq. (39)], rewritten in
the form

l

e m::ﬁ(vz)z} : (70)

Equation (69) contains, as already remarked in the In-
troduction, Al, which, up to second order represents the
mean curvature H. We shall use this form of H/IB when

adding it to 'Hg in order to obtain the complete expres-
sion for g up to the fourth-order terms. But first we
rewrite the expression for ’H[l, [Eq. (69)] with the help of
an arbitrary function ((z;!) (as explained at the begin-
ning of Sec. III) and then integrate by parts, using the
crossing criterion, to obtain

1
0= [an dz{m,ﬁm;,ﬁ(c_m,
+ [(magmis¢) — magmig] (vz)z} . (1)

If the coefficients o (!) multiplying 3 (VI)? and o'3(l) mul-
tiplying —%(VI)* are identical, i.e., os(l) = o3() =
¥5(1), then the sum of these two terms can be repre-

sented, up to fourth order, as X3(I) [\/1 + (Vi)?z - 1]_

At the same time we choose the remaining coefficients in
such a way that the terms proportional to Al present in
M and in M3 cancel each other and so the contribution

proportional to Al disappears from the sum ’Hé + Hé.
These requirements lead to the equations for A and ¢

(Mapmypg() — megmig

2
= 4 [3p(mia)? = FOpAmmy)|
(72)
Magmyg(l —C) = 295(X — 1)mjgmi, .

l
0

[Strictly speaking in this way one obtains two integral
equations; Egs. (72) represent the stronger requirement
of the equality of the integrands in these equations.] The
function A(z;!), which solves these equations, has the
form

I N
2ygmLgm s

l
< [t () g (50
_[m;g(% l/)]z} .

After substituting A(z;!) into the expression for X3(l)
one obtains

Az ly = -3+

(73)

!
Z5() = K-/O dz[8(ypmigmig)’
—1295(mzg)? + 4(mig)?] . (74)

Note that the expression for the I-dependent stiffness co-
efficient $7(!) derived above [Eq. (74)] is different from
the one derived previously within the second-order cal-
culations [32,39]

l
Se(l) = K/o dz (ml,g)? . (75)

Nonetheless, the limiting values of these two functions
are the same: $%(c0) = Tg(o0) = £m2 pg.

The coefficient 2B(l) multiplying the mean curvature
in Eq. (65) is given in Eq. (66); for the time being we call
this coefficient Cj3p(1). After inserting the expression for
A [Eq. (73)] into Eq. (66) one obtains

1
Coull) = /O U [S5() — Sp(l)] - (76)

Next we determine the coefficients C;y. (1) and Cj(1).
From Egs. (61) and (69) one obtains

1
CEHz ) = —ZKA dz'yﬁ(mf,rﬁ)z , (77)

l
Coa(l) = /0 dza(z;1) . (78)

To derive the explicit expression for C—Ec(l ) the solution of
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the integral equation (67) for a(z;1) has to be known. We
proceed similarly as before and equate the integrands on
both sides of this equation; the solution of such obtained
equation is

1
a(z;l) = a(z;2) — %/ dl'A(z; ') [1 = 3n(2;1')]
x'yg(z;l’)m;ﬁ(z;l')m;:ﬁ(z;l') . (79)

It is, however, straightforward to check that Eq. (76)
leads to the wrong limiting value of CE‘ #(1); the correct
value is given by Eq. (60). The reason for this apparent
disagreement is similar to the free case discussed in de-
tail in Appendix B. To obtain the correct expression (for
details, see Appendix D) one has to split, analogously
to the free case, the expression f dR+/1+ (Vl)zcgc(l) G
into two parts, one of which is transformed via inte-
grations by parts into the expression contributing to
JAR\/1+4 (V1)2C5, (1) H.  After including this addi-

tional contribution one obtains finally

K

Chu(l) = ?méo - [m di' [5(") — Zp()]  (80)

and the expression for
* 4K ! / v ! ! !
Coc(l) = —- [ dl dzg(z;1') myp(z; 1)
0 0
" . ll 1K 2
xmyg(z;l') + g Km0

l v
+%/0 dl’/o di" [255(1") — Sap(l)] + C,
(81)

where C is an arbitrary constant. The a-phase contri-

butions to the coefficients ¥} 4(1), C, Cjpa(l) are iden-

tical to the free case (studied in Sec. IITA) and equal
2

%Kpamio,—gmio,—g‘l—';fﬂ, respectively. The full I-

dependent coefficients are obtained as the sums of the
a and B contributions.

C. Asymptotic behavior
of the coefficients X7 ;(1),C3 (1), Cy2 (1), Cz ()

In previous sections we have derived the in-
tegral expressions for the I-dependent coefficients
2:5(0),CH(1),Cha(1),CE (1) [see Egs. (74), (80), (77), and
(81)] and we checked that these expressions have the
proper limiting values [see Egs. (60)]. It is straightfor-
ward though cumbersome to derive the explicit expres-
sions for the coeflicients X75(1),C5(1),CF2 (1), CE (1), at
least for large I. Details of the derivation of ¥} ;(l) are
given in Appendix C. The derivation of the [ dependence
of the remaining coefficients is similar and thus below we
present only the results. It turns out that up to the X?
terms [(X = exp(—pgl)] each of these coefficients can be
written in the general form

C(l) =Co + (Cro + C11pgl) X

+ [C20 + Czlpﬁl + sz(pﬁl)z] X2 + ... (82)
In particular,
Tap(l) =0ap + wie X
+ [w3o + wiipsl + wia(psl)?] X2 + ..., (83)

where
OaB = %K (miopa + m;z;opﬁ) ,
wio = 2KpgmgoT,
wio = $Kpsm3, [07 +160 —1-4(G +5)rh],  (84)
wiy = Kpgm, (g2 +10G — 1+ 4ppg) ,
Ci(l) = c} l %] x?
H() =Y + [q20 + q21psl + g22(psl)?] +...,

(85)

where

K
C(IJI = D) (méo - mio) s

1
@20 = _ZngO [G® +18G — 1 — 4(G + 4)pp3] + 4K T2,

1
921 = — 5 Kmo(G° +8G — 1+ 4pp}), (86)

g22 = 2Km}3,G ;

CHZ(I) = C(}iz + .5‘10X
+ [s20 + s21(pgl) + s22(ppl)?] X2 + ...,

0 K (mBy  mi,
cgz2=—— | —+—1],
4 DB Pa

K’Tmﬁo
p

(87)

where

S10 =

I(’l’2 _ Km%o
g 4pg

820 = [G® —1+2(26 + 1)pp3], (88)

m2
831 = — pﬁ(g—1+4ppg),

2K mf,o
pg

G ;

822 =
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and

Ce(l) =c+rieX

-+ [7’20 + Tzl(pgl) + ng(pﬁl)z] X2 + ..., (89)
where
Ktm
Ti0 = B9 9
Pp

2

Km? K
- p"" [3G2 +9G — 3 — 2(3G + 1)pp3] + ——
5

12 6ps
Kmgo (.2 2
o1 = G“— 1+ 4pp3) , 90
21 4ps ( ﬁ) (90)
2Km
To2 = — 2p:0 g,

and c is an arbitrary constant.

We have already remarked that the expression for the I-
dependent surface stiffness coefficient as obtained within
fourth-order theory, i.e., X%, (1), is different from the
one obtained within second-order theory, i.e., ¥} 5(l) #
¥ap(l). This difference is already reflected in the form
of the coefficients w3y, w3;, and w3, as compared with
those obtained from second-order theory. In particular,
w3y = —4Kpﬁml239 < 0 while wy2 = 0; thus the dominant
next-to-leading-order correction term to oo for large pgl
is not of the form way; pgl X2, as in the case of X,5(1),
but is of the form w3,(pgl)2X?. Moreover, we observe
that for the coefficients 7,5(1), C (1), cs(l ) the leading-
order correction term to the free case is of the form C1p.X,
i.e., C11 = 0 [see Eq. (82)]. In these cases Cy9 ~ 7, which
means that for 7 = 0 the leading-order correction term
has the form [Czo + Czlpﬁl + sz(pﬂl)z} Xz. Note that
similar property holds also in the case of the effective in-
terface potential V' (I) [see Egs. (6) and (39)—(43)]. In the
case of the coefficient C'};(!) the term proportional to X
is missing.

IV. CONCLUSION

Using the mean-field version of the LGW theory sup-
plemented by the crossing criterion, we have derived the
capillary-wave Hamiltonian for an interface fluctuating in
the presence of a flat substrate. Our derivation includes
terms up to fourth-order in the spatial derivatives; such
terms contribute to the mean and to the Gaussian curva-
tures and also to the change of the interfacial area, i.e.,

0 /1+(VI)2 -1~ L(Vi)? — $(VI)*. The capillary-
wave Hamiltonian is then unambigously written in a form
analogous to the Helfrich Hamiltonian for a membrane;
the difference is that, in addition to the curvature terms,
it contains the standard term describing the cost in free
energy due to the change of the interfacial area. All the
coefficients that enter this fourth-order Hamiltonian are
found to be functions of the local distance ! between the

fluctuating interface and the substrate. Thus the dis-
tance [ enters not only into the expressions for the mean
and the Gaussian curvatures and into the interfacial area
change but also into the coeflicients multiplying these ge-
ometrical factors in the capillary-wave Hamiltonian. We
have derived the general expressions for these functions
and we have checked that in the limit of the free interface
they reduce to the expressions derived in an independent
way. We have also explicitly determined the leading-
order terms in these functions when pgl becomes large.
In this case these functions have a characteristic struc-
ture: the sum of exp(—jpgl) multiplied by the polynomi-
als in pgl of order not higher than j, 7 = 0,1,.... This
structure has been already determined by Jin and Fisher
[31] in the case of the surface stiffness function in their
analysis of second-order contributions to the capillary-
wave Hamiltonian. Here we showed that this structure
extends also to the functions multiplying the curvature
contributions. Moreover, we have indicated that the sur-
face stiffness function as obtained within fourth-order
theory, i.e., £ 5(l), differs from the expression obtained
within second-order theory, i.e., £,g(l). This difference
in the general expressions derived for E;B(l) and for
Yap(l) is reflected in the values of the coefficients mul-
tiplying exp(—2pgl) in the large pgl expansion of £} 5(1)
and ¥,5(l). It turns out that not only w3, # wso and
w3, # w1, but also w3, < 0 while wpy = 0. This fact
may have important consequences. Indeed, it was shown
by Jin and Fisher [32] that the value of the coefficient
w21 (w21 < 0) is of crucial importance for the predictions
of the functional renormalization-group analysis of the
wetting transitions based on the second-order Hamilto-
nian. Since in fourth-order theory not only w};, # wa1
but also the term (pgl)? exp(—2pgl) is present, one can
speculate that renormalization-group analysis based on
the fourth-order Hamiltonian might lead to different pre-
dictions with respect to the location of the separatrix
between the first- and second-order wetting transitions.
This problem is left for the future studies.

Finally, let us comment on the ambiguity in the struc-
ture of the l-dependent coefficients within the second-
order-theory mentioned in the Introduction and on how
this ambiguity is reflected in the renormalization-group
flow equations within this theory. It is straightforward to
check that the functional renormalization of the second-
order Hamiltonian of the form

Howll] = /dR [%

() (VD)2 + %C;,(l) Al + V(l)]

(91)
leads to the flow equations
oxrt (1) 62;%(1) 2622;%(1)
o - Tar TS (92)
0O _ e 1 %D | PO
5 = —CCx + Cl + wﬁﬁ 5z (93)
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av(l)
ot

avf(l) , 82VH(l)

or

= (d—)V'() + ¢l +w Eﬁ

a(l) -

+ wﬁgAz

where ( = 3%1 (in this paper d=3), A is the momentum
cutoff, t is the usual length rescaling parameter, and w is

the capillary parameter given by

kBT 22—dAd—3
w = QIUT ) (95)
T 2 F(T)JQIB

for details of the renormalization procedure see [32]. To
analyze the order of the wetting transition one has to
know the renormalized potential V'* (l) This is obtained
by solving Eq. (94) with the input ¥ 3(1) and C3} derived
by solving Egs. (92) and (93). It turns out, however,
that if one uses Eq. (76), then the last term on the rhs of
Eq. (94) is replaced by wé3 A% X 5(1) and thus Eq. (94)
takes exactly the form used by Jin and Fisher [32]. More-
over, using Egs. (76), (92), and (93), one can show that
the function ¥ 5(1) fulfills exactly the same equation as
Brh(1) does, i.e., Eq. (92), and thus the solution of the
problem is identical to the one given in [32].
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APPENDIX A

In this appendix we show that the 3-phase contribution
to the capillary-wave Hamiltonian is given by Eq. (39).

HE = _/dR (Emog + by + gmag) mn|,_

1
1
- K /dR/0 dz { my, [miﬁﬁ —pg(m,r,a — mgo)] + 3 Z (pgmj - m;!)m,-

/dR/dz

i+j=n—1

For this purpose, into each of the expressions for Hg;, i =
1,...,4, we insert Eq. (26) and perform integration by
parts, taking into account the crossing criterion Eq. (29).
In this way one obtains the following expressions for the
2nth-order contributions Hpisn > 1:

Hpy = —K/dR{mnm,rﬁ|z__o +3 Z m; mj|.=o

i+j=n
/dz mnmﬂ+—Zm1 }, (A1)

i+j=n

!
’ng =-K /dR/ dz{mn_lAm.,,,g
0

+lz

2 m; Amj } ’
i+ij=n—1
1
Hps = sz/dR/O dz{mn (mag — mgo)

+% Z mimj}7

i+j=n

(A2)

(A3)

Hg4 = /dR{—hlm'n.Iz:O - gmnmwﬂ|z:0

Z mzm]|z 0 }

1.+] n

(A4)

After summing the above contributions [Egs. (A1)—(A4)],
one obtains

1

0 9o Z (Km;- —}—gmj) mi|z=0

i+j=n

(A5)

i+j=n

m;Am; + 2Mmp—1Amag
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The first two terms vanish due to the boundary condition
at z = 0 [Eq. (13)] and the third term vanishes because
myg fulfills Eq. (12). Finally, one obtains

2%3_ Z/dR/ dz[

— Z m;Am; — 2mn_1Am,,g} . (A6)

i+j=n—1

m; Am]’_l
i+j=n

It is straightforward to check that

i Z m;Am;_; — Z m;Am;

n=2 i+j=n i+j=n—1

= Zmn_lAm"ﬁ, (A7)

n=2

so that

i?‘lz = ——Z/dR/ dzm,Amgg .
n=2

After adding the lowest-order contribution ’H}; derived
previously

(A8)

H = {j dR [ / demapAmag + V(l)] (A9)
one finally obtains

l
0

APPENDIX B

In this appendix we analyze the asymptotic behavior
of various coefficients present in Eq. (6) in the limit of
free interface, i.e., for | — oo. For the free case one can
use the results derived for the plnned interface in which
the expressions for m2 2 and 'y,y are given by Egs. (51)
and (53) and the z integration extends from —oo to I. A
straightforward calculation shaws that in the free case

A%(z; 1) =0,

ao(z; )= ao(z; z) = —Zméo, (B1)

1
E?BH = —ZK mf;o .

¢y g is different from the one obtained within the di-
rect analysis of the free case [see Sec. IIIA, Eq. (60)].

At the same time the Gaussian curvature contribution

JdR fiw dz4/1+ (VI)2G contains the divergent inte-
gral over z, which, however, is multiplied by the vanish-

ing integral [dR./1+ (VI)2G. Below we point to the

fact that this divergence is in fact apparent; we also find
the missing part dcjy of ¢ ;4 leading to agreement with
the previously found expression Eq. (60). That part of
‘Hp that contains the Gaussian curvature is rewritten as

/dR/l dz/T+ (VI)2G
-L
=/dR [(l—a) + (a—L)] VIt (VIEG

- /de\/l—k (VI)2G - a /dR\/l—I-(Vl)zG,
(B2)

where a is an arbitrary constant.
gives

Integration by parts

/de 1+ (VI2G =

/dR\/ (VI)2H . (B3)

Equation (B2) holds for a free system with a finite ex-
tension along the z axis and L represents the cutoff; we
employ it also in the limit L — oco. Finally,

1
—-%m%o/dR/ dz/1+ (VI)2G

— ﬁmg(,/dn\/u V2 H
+Ao/dR\/1+(Vl)2G,

where Ag is an arbitrary constant. We see that the
parameter ch multiplying the Gaussian curvature re-

mains arbitrary [34] and that both contributions to c3,
ie., &3y in Eq. (B1) and the contribution contained in
Eq. (B4), add up to the correct form of the ¢}y coeffi-
cient as given by Eq. (60).

(B4)

APPENDIX C

In this appendix we derive the explicit expression for
the function ¥3(!) up to the terms proportional to X2,

The expression for ¥3(I) [Eq. (74)] depends not only on
mxg [Egs. (16) and (17)], but also on the function yg(z;1)
[Egs. (48) and (18)]. yg(2;!) can be written in the form

v8(2;1) = [A+ Bz + (C + Dz) exp (—2pgz)]

x [1 — Gexp (—2p32)]~1 , (C1)

where
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l Gl —pgp 1
A - + T TR B = —-—)
2ps  pp(l—GX?) 2pp
(C2)
Gl 9X%-psp ,_ 9
2ps  pp(1-GX2)’ 2p

To derive the explicit expressions for the coefficients mul-
tiplying the powers of X in ¥} 5(l) one has to evaluate
the integrals

1 exp (jpﬁz)
- . - , C3
¢ /‘0 zexp ( Pﬁz)l — Gexp (—2pg2) 9
= /l dz exp (—ppz) e b (4
A B2)1 = G exp (—2pp2)

for j = —3,—1,1,3. While the integrals K; are elemen-
tary, the L;’s are not. They can be expressed in terms
of the dilogarithmic function Liy(t) [52]

Liy(t) = —/OtazslﬂM ,

s

(C3)

which has the following power series expansion for t2 < 1:
— t

Liy(t) —

Straightforward and tedious calculations, which use ex-
pansion (C6) and the identity [52]

(Cs)

L'Lg(t) + le(l - t) —{; - hl( ) 11’1(1 - t), (C7)

Cral) = / dza(z;1) = 2K/ dz/ d2' {p(#';2) [1 — n(z'; 2)A(2'; 2)| m

lead to the results

Eo(l) = 0ap + wipX

+wzo + wiipsl + w3y (pal)?]1 X + (C8)
where
1
0up = 3 K(pamZo + pam3a),
wio = 2Kpgmgor,
. 1
wiy = -Z—Kpﬂmgo [G% +16G — 4(G +5)pp3],  (C9)

w3y, = Kpgmjo [G® +10G — 1 + 4pp3],

wy, = —4Kpﬁm[2309.

Note that X7 5(l) [Eq. (C7)] has the same structure and

the same limiting value X% ;5(00) = 0qp as the function
¥ap(l) proposed by Jin and Fisher [31] within the second-

order analysis. Moreover, w}; = wio while the coefficients

w3g, W3y, and wj, are different from those obtained in [31].

APPENDIX D

In this appendix we analyze the Gaussian curvature
contribution [dR4/1+ (VI)?2 Cic(l) G to the capillary-
wave Hamiltonian. We want to check if also in the pinned
case, similarly to the free case studied in Appendix B,
one can extract from this term (via integration by parts)
a contribution to the mean curvature term, which after
combining with the already existing contribution Cjy (1)
[Eq. (76)] gives the correct limiting value of the coefficient
Czg(l). For this purpose it is convenient to rewrite the

expression for C3 (1) [Eq. (78)] as

(z z)m,rﬁ(z z)} (D1)

/dz/ dll {ya (23 YA (23 1) [1 — 3n(z3 1)) mly (25 1Y ml 5 (25 1)}

Changing the order of integration in the second term on
rhs of Eq. (D1) leads to

Cha(l) = 2K /Ol dl’ /01' dZ{'Yﬁ(Z;l') [1 — %/\(z;l’)]

xmyg(2; 1 )ym5(z; l)} (D2)

Note that the above expression is 77 independent. After
using the expression for A [Eq. (73)] and changing the
order of integration one obtains

Crall) = —/ dl'/ dz (2 1)ml g (2 1)ml o (2 1)

1 g
+% / av / di" [S5(") — Se(")] . (D3)
0 0
It is convenient to use the notation
l
K/ dzymigmys = Ao + Ai(l) (D4)
0

and
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/l dl' [S5() — Ss(I)] = Bo + Bu(l),  (D5)

where Ay, By are constants and A; (1), B1(l) decay expo-
nentially to zero for | — oo. Using the above defined
functions and the identity (up to fourth-order terms)

/dR 1+ (VI2iG = —B/dR

see Appendix B) one obtains
PP

1+ (V)2H (D6)

l
Coll) = 3 [ @' laa@) + Ba(t)] (07)
and
5Chu(l) = —4A0 — Bo . (D8)

Note that because By (l) vanishes at infinity one has

Bi(l) = —/°o ' (S5 — Se()] - (D9)

1
According to Eq. (D4), Aq represents the l-independent

contribution from the integral fol dzym; gm; 5. Using the

explicit expressions for m,g and g leads to the conclu-
sion that

Ag = llim [(B+X) (B+X)"(KsA + L3B)] , (D10)
—00

where the symbols K3, L3, B4, A, and B are defined in

the main text and in Appendix C. A straightforward cal-
culation gives

1 5

Ao = —gmpo K (D11)

and finally one obtains
* 1 o *
Coull) = L mo K [ ' [5() — Sp()] . (D12)

The above expression has the correct asymptotic limit,
ie., %méo K, for I = oo.

In the same way one can check that the function
;iH?(l) [Eq. (74)] has the correct asymptotic value

2
—-K;:s" [see Eq. (60)]. The final form of the coefficient

Ch(l) is
L v
CEG(l)=g/dl' / dzy(z;1')
3 Jo )

1
xm;ﬂ (z; l')m;'.ﬂ (z;1') + gngo}

+§ / a [ ar [ - Ss(7)] +C.
l 4
(D13)

Because of the vanishing of the integral
JdR /14 (V1)2G one can add an arbitrary constant
C to the coefficient C54(1).
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